1123. 最深叶节点的最近公共祖先

给你一个有根节点 root 的二叉树,返回它 最深的叶节点的最近公共祖先
回想一下:
  • 叶节点 是二叉树中没有子节点的节点
  • 树的根节点的 深度 0,如果某一节点的深度为 d,那它的子节点的深度就是 d+1
  • 如果我们假定 A 是一组节点 S最近公共祖先S 中的每个节点都在以 A 为根节点的子树中,且 A 的深度达到此条件下可能的最大值。
示例 1:
notion imagenotion image
输入:root = [3,5,1,6,2,0,8,null,null,7,4] 输出:[2,7,4] 解释:我们返回值为 2 的节点,在图中用黄色标记。 在图中用蓝色标记的是树的最深的节点。 注意,节点 6、0 和 8 也是叶节点,但是它们的深度是 2 ,而节点 7 和 4 的深度是 3 。
示例 2:
输入:root = [1] 输出:[1] 解释:根节点是树中最深的节点,它是它本身的最近公共祖先。
示例 3:
输入:root = [0,1,3,null,2] 输出:[2] 解释:树中最深的叶节点是 2 ,最近公共祖先是它自己。
提示:
  • 树中的节点数将在 [1, 1000] 的范围内。
  • 0 <= Node.val <= 1000
  • 每个节点的值都是 独一无二 的。

法 1 暴力解法

思路
找深度最深的节点。直到左右子树的深度一样
O(n^2)的复杂度
题解
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def lcaDeepestLeaves(self, root: Optional[TreeNode]) -> Optional[TreeNode]: if root is None: return None l_h = self.get_height(root.left) r_h = self.get_height(root.right) if l_h == r_h: return root if l_h > r_h: return self.lcaDeepestLeaves(root.left) else: return self.lcaDeepestLeaves(root.right) def get_height(self, root): if root is None: return 0 return 1 + max(self.get_height(root.left), self.get_height(root.right))

法2

思路
在法1的基础上,遍历一次,同时返回子树的最大深度,加当前深度下的最近公共祖先节点。
题解
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def lcaDeepestLeaves(self, root: Optional[TreeNode]) -> Optional[TreeNode]: if root is None: return None return self.getLca(root, 0)[0] def getLca(self, root, d): # 不仅返回树的最大的深度,还返回节点 if root is None: return (None, d) l = self.getLca(root.left, d+1) r = self.getLca(root.right, d+1) if l[1] == r[1]: return (root, l[1]) else: return l if l[1] > r[1] else r
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def lcaDeepestLeaves(self, root: Optional[TreeNode]) -> Optional[TreeNode]: if root is None: return None _, res = self.helper(root=root, depth=0) return res def helper(self, root, depth): if root is None: return depth, None l_depth, l_node = self.helper(root.left, depth+1) r_depth, r_node = self.helper(root.right, depth+1) if l_node is None and r_node is None: return depth, root elif l_node is None or r_node is None: return (l_depth, l_node) if l_node else (r_depth, r_node) else: if l_depth == r_depth: return (l_depth, root) elif l_depth > r_depth: return (l_depth, l_node) else: return (r_depth, r_node)
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def lcaDeepestLeaves(self, root: Optional[TreeNode]) -> Optional[TreeNode]: if root is None or (root.left is None and root.right is None): return root return self.helper(root)[1] def helper(self, root): if root is None: return [0, None] l = self.helper(root.left) r = self.helper(root.right) if l[0] == r[0]: return [l[0]+1, root] elif l[0] > r[0]: l[0] += 1 return l else: r[0] += 1 return r