304. 二维区域和检索 - 矩阵不可变

给定一个二维矩阵 matrix,以下类型的多个请求:
  • 计算其子矩形范围内元素的总和,该子矩阵的 左上角(row1, col1)右下角(row2, col2)
实现 NumMatrix 类:
  • NumMatrix(int[][] matrix) 给定整数矩阵 matrix 进行初始化
  • int sumRegion(int row1, int col1, int row2, int col2) 返回 左上角 (row1, col1)右下角 (row2, col2) 所描述的子矩阵的元素 总和
示例 1:
notion imagenotion image
输入: ["NumMatrix","sumRegion","sumRegion","sumRegion"] [[[[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]],[2,1,4,3],[1,1,2,2],[1,2,2,4]] 解释: NumMatrix numMatrix = new NumMatrix([[3,0,1,4,2],[5,6,3,2,1],[1,2,0,1,5],[4,1,0,1,7],[1,0,3,0,5]]]); numMatrix.sumRegion(2, 1, 4, 3); // return 8 (红色矩形框的元素总和) numMatrix.sumRegion(1, 1, 2, 2); // return 11 (绿色矩形框的元素总和) numMatrix.sumRegion(1, 2, 2, 4); // return 12 (蓝色矩形框的元素总和)
提示:
  • m == matrix.length
  • n == matrix[i].length
  • 1 <= m, n <= 200
  • 105 <= matrix[i][j] <= 105
  • 0 <= row1 <= row2 < m
  • 0 <= col1 <= col2 < n
  • 最多调用 104sumRegion 方法
通过次数62,871提交次数115,295

前缀和

思路
先计算完二维矩阵的前缀和。然后就可以直接通过简单计算返回需要的
题解
class NumMatrix: def __init__(self, matrix: List[List[int]]): self.matrix = matrix m, n = len(self.matrix), len(self.matrix[0]) self.Prefixsum = [[0 for _ in range(n+1)] for _ in range(m+1)] for i in range(1, m+1): for j in range(1, n+1): self.Prefixsum[i][j] = self.Prefixsum[i-1][j] + self.Prefixsum[i][j-1] + self.matrix[i-1][j-1] - self.Prefixsum[i-1][j-1] def sumRegion(self, row1: int, col1: int, row2: int, col2: int) -> int: return self.Prefixsum[row2+1][col2+1] - self.Prefixsum[row1][col2+1] - self.Prefixsum[row2+1][col1] + self.Prefixsum[row1][col1] # Your NumMatrix object will be instantiated and called as such: # obj = NumMatrix(matrix) # param_1 = obj.sumRegion(row1,col1,row2,col2)